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Abstract
Negative-donor centers in quantum dots with parabolic confinement potential have been studied
for the case with the presence of a perpendicular magnetic field. Calculations are carried out by
using the method of numerical diagonalization of the Hamiltonian matrix within the
effective-mass approximation. The ground-state electron structures and angular momentum
transitions are investigated. The binding energies of the ground and some bound excited states
are obtained as a function of the applied magnetic field strength. As the magnetic field strength
B is increased, there may appear more bound states. On the basis of the computed energies and
wavefunctions, the linear optical absorption coefficients have been examined, for between the
1P and 1S states. The results are presented as a function of the incident photon energy for the
different values of the confinement strength and the magnetic field strength. It is found that the
optical properties of the negative-donor centers in quantum dots are strongly affected by the
confinement strength and the magnetic field strength.

1. Introduction

A neutral shallow donor impurity confined in low-dimensional
semiconductors can readily bind a second electron to form
a negative-donor center (D−), stable in a strong magnetic
field up to room temperature [1]. A negative-donor center
is analogous to the H− ion, which offers an interesting
example of a few-particle system where the electron–electron
correlation plays a decisive role in trapping and keeping of
a second electron [2]. Since the existence of D− centers
in center-doped GaAs/Alx Ga1−x As multiple quantum wells
(QWs) was first reported by Huant et al [1] in 1990, many
experimental [3–5] and theoretical [6–22] investigations for
D− centers in QWs, and quantum dots (QDs) with and without
magnetic fields have been carried out. Much of this work
has concentrated on GaAs/GaAlAs structures; particularly on
isolated nanostructures subjected to an external magnetic field
directed perpendicular to the heteroplanes. The reason for this
is that the magnetic field significantly increases the stability of
D− centers.

From the point of view of quantum confinement,
engineering the electronic structure of materials by means
of shape and size control offers the possibility of tailoring
the energy spectrum to produce desirable optical transitions.
These features are useful for the development of optoelectronic
devices with tunable emission or transmission properties and

ultra-narrow spectral linewidths. Hence, optical properties
of QDs have been investigated both experimentally and
theoretically by many authors [23–28]. In the optical
transition of quantum confined few-particle systems, the
analysis of the negative-donor center states is unavoidable
because the confinement of quasiparticles in such structure
leads to the enhancement of the oscillator strength of electron-
donor excitations. Meanwhile, the dependence of the optical
transition energy on the confinement strength (or dot size)
allows the tunability of the resonance frequency. Very recently,
Sahin investigated the linear optical properties of a spherical
QD containing one and two electrons with a hydrogenic
impurity [29].

Since QDs are created mainly through producing a lateral
confinement restricting the motion of the electrons, which are
initially confined in a very narrow QW, they usually have the
shape of flat disks, with transverse dimensions considerably
exceeding their thickness. The energy of single-electron
excitations across the disk exceeds other characteristic energies
in the system, and the confined electrons can be considered
as two-dimensional. In most studies, a harmonic oscillator
potential were used to describe the lateral confinement of
electrons. In the present work, we will focus on studying
the electronic properties and optical absorption spectra of
the negative-donor centers in QDs with a parabolic lateral
confining potential in magnetic fields by using the method of
numerical diagonalization of the Hamiltonian.
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2. Theory

In the effective-mass approximation, the Hamiltonian for the
negative-donor center in a parabolic QD when the magnetic
field is applied perpendicular to the x–y plane is given by

H =
∑

i=1,2
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where �ri ( �pi) is the position vector (the momentum vector) of
the i th electron originating from the center of the dot; m∗

e is the
effective mass of an electron; r12 = |�r1 − �r2| is the electron–
electron separation; ω0 is the strength of the confinement, ε

is the effective dielectric constant, g∗ is the effective Landé
factor, μB is the Bohr magneton and S is the total spin of
two electrons. With the symmetric gauge for magnetic field
�A = (B/2)(−y, x, 0), the Hamiltonian then reads
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where ω2 = ω2
0 + ω2

c/4, ωc = eB/cm∗
e is the cyclotron

frequency, and L is the total angular momentum.
Introducing the coordinates

�ξ1 = �r1 − �r2, �ξ2 = (�r1 + �r2)/2, (4)

then equation (3) can be rewritten as

H = H0 + Vc, (5)

with

H0 = p2
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2ωc L − g∗μB BS, (6)

where μ = m∗
e/2 is the reduced mass associated with �ξ1, and

M = 2m∗
e is the total mass.

The Hamiltonian has cylindrical symmetry with respect to
the QD axis, i.e., z-axis, which implies that the total orbital
angular momentum L is a conserved quantity, i.e., a good
quantum number. The total spin of two electrons, i.e., S,
is also a conserved quantity. To obtain the eigenfunction
and the eigenenergy associated with the D− centers in QDs
under magnetic fields, we diagonalize the Hamiltonian. As
we know, the two electrons obey Fermi–Dirac statistics, which
means that the electronic part of the total wavefunction must
be antisymmetric, i.e., when S = 0 the spatial part of the
electronic wavefunction must be symmetric and when S =
1 the spatial part of the electronic wavefunction must be
antisymmetric. Thus, S can be used as a quantum number
which indicates the parity of the state. Hence, the eigenstates
of the D− centers in QDs can be indicated by a series of energy
levels with quantum numbers (L, S).

In order to diagonalize the Hamiltonian, a set of the
harmonic oscillation product states were chosen as basis
functions so that the eigenstates can be expanded in terms of
them. It is obvious that all the associated matrix elements have
analytical forms; thus the Hamiltonian matrix can be calculated
very accurately and very fast. Let ϕω′

n�(
�ξ) be a two-dimensional

harmonic oscillator state with an eigenenergy (2n+|�|+1)h̄ω′,
where ω′ is an adjustable parameter and in general not equal to
ω. Let

φk(�ξ1, �ξ2) = [ϕω′
n1�1

(�ξ1)ϕ
ω′
n2�2

(�ξ2)]LχS (7)

where the orbital angular momenta �1 and �2 are coupled to
L, and k denotes the set of quantum numbers n1, �1, n2, and
�2. χS = [η(1)η(2)]S, where η(i) is the spin state of the i th
electron and the spins of two electrons are coupled to S. On the
basis of the harmonic oscillator states a set of basis functions
totally antisymmetric with respect to particle interchanges has
been chosen as


k = (1 − P12)φk (8)

where P12 denotes an interchange of the indices 1 and 2.
Let N = 2(n1 + n2) + |�1| + |�2|. Let {�L S} denote the

set of basis functions with the total orbital angular momentum
L and the spin angular momentum S of electrons 1 and 2
including all the 
k having their N smaller or equal to an upper
limit Nmax. It is obvious that the total number of basis functions
of the set is determined by Nmax. In what follows Nmax is
in general given as 40. With {�L S}, the Hamiltonian matrix
can be calculated. The accuracy of the solutions depends on
how large the model space is. Since we are interested only in
the low-lying states and in the qualitative aspects, the model
space adopted is neither very large, to facilitate numerical
calculation, nor very small, to ensure qualitative accuracy.
This is achieved by extending the dimension of the model
space step by step; in each step the new results are compared
with previous results from a smaller space, until satisfactory
convergence is achieved. In this work, the dimension of the
model space is constrained by 0 � N � 40. If N is
increased by 2, the ratio of the difference in energy is less
than 0.1%. After the diagonalization we obtain the eigenvalues
and eigenvectors. Evidently, the eigenvalues depend on the
adjustable parameter ω′. In practical calculation, ω′ serves as a
variational parameter to minimize the low-lying state energies.

We define the binding energy of the νth quantum state of
D− centers as

EB(D−) = E(D0) + E0 − E(D−) (9)

where E(D−) is the energy of the νth state of the D− centers
in the QDs, E0 and E(D0) are, respectively, the lowest energy
levels of an electron in QDs, without and with the Coulomb
potential. The binding energy defined by (8) possesses the
following physical interpretation: this is the minimum energy,
which is required to liberate one electron from the bound state
of D− centers. After this dissociation process, the second
electron is bound in the ground state of the D0 center. The
condition of stability against dissociation into a neutral donor
and a free electron reads EB(D−) � 0.
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Figure 1. The lowest-lying energy levels for a negative-donor center
in a parabolic QD with h̄ω0 = 3.0 meV as a function of the magnetic
field strength B. The solid and dashed lines represent, respectively,
the singlet and triplet states.

The optical absorption calculation is based on Fermi’s
golden rule, for which the optical absorption coefficient is
given by [29]

α = 4πβFSσs

nre2
hν|Mfi|2δ(Ef − Ei − hυ), (10)

where nr is the refractive index of the semiconductor and it is
taken as 3.2. e is the electronic charge of an electron, σs is
the electron density in the QD, βFS = e2/(4πε0h̄c) is the fine
structure constant, and hυ is the photon energy. Ef and Ei are
the final-state and initial-state energy eigenvalues, respectively.
Mfi = e〈 f |�r |i〉 is the electric dipole moment of the transition
from the i state to the f state. The δ function in equation (9) is
replaced by a narrow Lorentzian by means of

δ(Ef − Ei − hυ) = h̄�fi

π{[hυ − (Ef − Ei)]2 + (h̄�fi)2} . (11)

Here � is the phenomenological operator. The nondiagonal
matrix element �fi( f �= i) of operator �, which is called the
relaxation rate of the f th state and the i th state, is the inverse
of the relaxation time Tfi for the states | f 〉 and |i〉, namely
�fi = 1/Tfi, and Tfi is taken as 0.14 ps.

3. Numerical results and discussion

Our numerical computation is carried out for one of the typical
semiconducting materials, GaAs, as an example with the
material parameters as follows: ε = 12.4, g∗ = −0.44, and
m∗

e = 0.067me, where me is the mass of a free electron. The
material parameters used in the calculations correspond to the
QDs of Maksym et al [30]. For simplicity, we restrict our study
to the L � 2 states, i.e., the ground-state (1S) and the following
low excited states: 3S, 1P, 3P, 1D, and 3D.

Figure 1 shows the lowest-lying energy levels for a
negative-donor center as a function of the magnetic field
strength B . The confining energy h̄ω0 is set to be 3.0 meV [31],

Figure 2. Binding energy of the low-lying energy states of a
negative-donor center in a parabolic QD with h̄ω0 = 3.0 meV as a
function of the magnetic field strength B.

which corresponds to a QD with characteristic radius R =
(h̄/m∗

eω0)
1/2 = 19.47 nm. In what follows the energy unit

is meV and the length unit is nm. The solid and dashed
lines represent the results for the singlet and triplet states,
respectively. We can see that an important aspect of the
D− centers under the magnetic field is that the ground-state
transition can appear as B increases. From figure 1, we find
that the first ground-state transition of the D− center occurs
at B = 2.6 T (from the 1S state to 3P state, i.e., the spin of
the ground-state changes from S = 0 to 1) and the second one
occurs at B = 13.5 T (from 3P to 1D, the triplet → singlet-state
transition). It is the competition between the single-particle
energy and the interacting energy that finally determines the
energy. We know that the slope of the rising curve depends
on L. A smaller L would lead to a larger slope because the
negative term − 1

2ωc L is weaker. Therefore, when B increases,
the curve with a small L might cross the curve with a larger
L because the former is rising faster. Obviously, the crossing
would lead to a transition of L of the true ground state from
one to another. However, the transition is strictly limited to
between two magic numbers of L [32]. The origin of the magic
numbers is in the quantum constraint arising from the Pauli
principle [32].

Figure 2 shows the variation of the binding energy of
the low-lying energy states of a negative-donor center in a
parabolic QD with h̄ω0 = 3.0 meV as a function of the
magnetic field strength B . From this figure we find the
following results: (1) the binding energies EB(D−) increase
as the magnetic field strength B increases except for the 3S
state. A qualitative explanation is as follows: the Hamiltonian
H contains positive terms (the first four terms in H , i.e.,
the single-particle energy) and negative terms (the Coulomb
attractive energy Vc, − 1

2ωc L and −g∗μB BS), which compete.
Obviously, when the magnetic field strength B increases,
the confinement strength will increase. We note that as the
confinement strength is increased (i.e., the confined potential
radius is reduced), the Coulomb attractive energy increases,
and the single-particle energy also increases. On the other
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Figure 3. The linear optical absorption coefficient of a
negative-donor QD as a function of the incident photon energy hυ
for three different values of the confinement strength h̄ω0 in the
absence of magnetic field.

hand, the Hamilton contains two negative terms − 1
2ωc L and

−g∗μB BS which are proportional to B and therefore would
cause a linear decrease in the energy. The binding energy of
the low-lying states in a QD is determined by a competition of
these results. It is obvious that, for the ground state, these two
terms are zero because L = 0 and S = 0; hence, the binding
energy of the ground state slowly increases with increasing B .
(2) When the magnetic field strength is less than B = 2.1 T,
the D− center confined in a QD possesses two bound states,
i.e., the 1S and 3P states, and for 2.1 � B < 2.4 T, there exist
three bound states in the range of our study. When B � 2.4 T,
as the magnetic field strength B is increased further, the fourth
bound state (3D) appears. Hence, as B is increased further,
there are more bound excited states appearing. However, the 3S
and 1P states are always unbound. This is because the single-
particle energies of the 3S and 1P states are always larger than
those of negative terms with increasing B . (3) We find that the
binding energies of the states with L +S even, i.e., the magic L
states, increase more quickly than those of the adjacent states
with L + S odd, non-magic L states with increasing B . This
feature is a consequence of the mechanics symmetry. It has
been discussed in previous publications and this will not be
repeated here [32–34].

Furthermore, in order to study the optical properties of a
negative-donor center QD, a numerical calculation has been
performed for the linear optical absorption coefficient α as a
function of the incident photon energy hυ in the range from
0 to 80 meV in the absence of magnetic field. We restrict
our study to the transition of the 1S state to the 1P state. In
figure 3 the confining energies h̄ω0 are set to be 10.0, 20.0,
and 30.0 meV. From this figure we can find that the quantum
effect of the QD is obvious. It is readily seen that the linear
optical absorption coefficient of small-radius QDs (the stronger
confinement strength) is much stronger than that of large-
radius QDs. We also find that the stronger the confinement
strength h̄ω0 is, the sharper the linear absorption peak will
be and the bigger the absorption peak intensity will be.

Figure 4. The linear optical absorption coefficient of the
negative-donor QD with h̄ω0 = 20.0 meV as a function of the
incident photon energy hυ for three different values of the magnetic
field strength.

One physical origin of these results is that the optical
absorption spectrum depends on the electron density in QDs,
i.e., depends on the QD size. Another reason is that the
electronic dipolar transition matrix element increases with the
confinement strength of the parabolic potential. Thus, these
lead to the optical absorption coefficient increase. On the other
hand, we also find that the linear absorption peak values appear
at hυ = 20.2, 35.2, and 50.0 meV, respectively. Hence, as
the confinement strength h̄ω0 increases, the absorption peak
will move to the right, which shows a confinement-strength-
induced blue shift of the resonance in QDs. The physical origin
is that, with the dot radius decreasing, the Coulomb binding
energy, between the electron and the donor, is increased,
leading to the increase of the energy difference between the
1S state and the 1P state. The absorption spectrum peak values
are decreasing with increasing dot radius, because the energy
levels come close to each other [29, 35].

Figure 4 shows the linear absorption spectrum, for
between the 1P state and the 1S state of the negative-donor QD
with h̄ω0 = 20.0 meV, as a function of the incident photon
energy hυ in the range from 0 to 80 meV for three different
magnetic field strengths, i.e., B = 0, 10 and 20 T, respectively.
The effect of the magnetic field also seems clear. It can been
seen that the linear absorption is smaller for stronger magnetic
field and the absorption peaks shift to lower energies (red
shift) with increasing B . This is because the energy difference
between the 1S and 1P states will decrease with increasing B .
Thus, it leads to the optical absorption coefficient decrease.

In conclusion, we have investigated the feature of the low-
lying states for L � 2 of the negative-donor centers confined
by a parabolic QD as a function of magnetic field strength.
The ground-state transition of the D− centers occurring as a
function of B was found. For our D− center QDs, it was
found that there are two bound states in weak magnetic field
and there appear to be more bound states with increasing B .
The linear optical absorption coefficient has been examined on
the basis of the computed energies and wavefunctions. The
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results are presented as a function of the incident photon energy
for the different values of the confinement strength and the
magnetic field strength. It is found that the optical properties of
the negative-donor center in QDs are strongly affected by the
confinement strength and the magnetic field strength. This may
be important in the quantitative understanding the optical and
magnetic properties of the negative-donor center QDs. These
features make the parabolic QDs very promising candidates for
optical material and device use.
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